首页> 外文OA文献 >PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes
【2h】

PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes

机译:poseCNN:一种用于6D目标姿态估计的卷积神经网络   凌乱的场景

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Estimating the 6D pose of known objects is important for robots to interactwith objects in the real world. The problem is challenging due to the varietyof objects as well as the complexity of the scene caused by clutter andocclusion between objects. In this work, we introduce a new ConvolutionalNeural Network (CNN) for 6D object pose estimation named PoseCNN. PoseCNNestimates the 3D translation of an object by localizing its center in the imageand predicting its distance from the camera. The 3D rotation of the object isestimated by regressing to a quaternion representation. PoseCNN is able tohandle symmetric objects and is also robust to occlusion between objects. Inaddition, we contribute a large scale video dataset for 6D object poseestimation named the YCB-Video dataset. Our dataset provides accurate 6D posesof 21 objects from the YCB dataset observed in 92 videos with 133,827 frames.We conduct experiments on our YCB-Video dataset and the OccludedLINEMOD datasetto show that PoseCNN provides very good estimates using only color as input.
机译:估计已知对象的6D姿势对于机器人与现实世界中的对象进行交互非常重要。由于物体的种类以及物体之间的混乱和遮挡而导致的场景复杂性,该问题具有挑战性。在这项工作中,我们引入了一个新的用于6D对象姿态估计的卷积神经网络(CNN),称为PoseCNN。 PoseCNN通过在图像中定位对象的中心并预测其与相机的距离来估计对象的3D平移。通过回归到四元数表示来估算对象的3D旋转。 PoseCNN能够处理对称对象,并且对于对象之间的遮挡也很强大。此外,我们为6D对象姿势估计贡献了一个大型视频数据集,称为YCB-Video数据集。我们的数据集提供了来自YCB数据集中21个对象的准确6D姿势,这些对象在92个视频中观察到了133,827帧。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号